Random doubly stochastic tridiagonal matrices
نویسندگان
چکیده
Let Tn be the compact convex set of tridiagonal doubly stochastic matrices. These arise naturally in probability problems as birth and death chains with a uniform stationary distribution. We study ‘typical’ matrices T ∈ Tn chosen uniformly at random in the set Tn. A simple algorithm is presented to allow direct sampling from the uniform distribution on Tn. Using this algorithm, the elements above the diagonal in T are shown to form a Markov chain. For large n, the limiting Markov chain is reversible and explicitly diagonalizable with transformed Jacobi polynomials as eigenfunctions. These results are used to study the limiting behavior of such typical birth and death chains, including their eigenvalues and mixing times. The results on a uniform random tridiagonal doubly stochastic matrices are related to the distribution of alternating permutations chosen uniformly at random.
منابع مشابه
Fibonacci numbers, alternating parity sequences and faces of the tridiagonal Birkhoff polytope
We determine the number of alternating parity sequences that are subsequences of an increasing m-tuple of integers. For this and other related counting problems we find formulas that are combinations of Fibonacci numbers. These results are applied to determine, among other things, the number of vertices of any face of the polytope of tridiagonal doubly stochastic matrices.
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملOn The Second Order Linear Recurrences By Generalized Doubly Stochastic Matrices
In this paper, we consider the relationships between the second order linear recurrences, and the generalized doubly stochastic permanents and determinants. 1. Introduction The Fibonacci sequence, fFng ; is de ned by the recurrence relation, for n 1 Fn+1 = Fn + Fn 1 (1.1) where F0 = 0; F1 = 1: The Lucas Sequence, fLng ; is de ned by the recurrence relation, for n 1 Ln+1 = Ln + Ln 1 (1.2) where ...
متن کاملRandom Doubly Stochastic Matrices: the Circular Law
Let X be a matrix sampled uniformly from the set of doubly stochastic matrices of size n×n. We show that the empirical spectral distribution of the normalized matrix √ n(X − EX) converges almost surely to the circular law. This confirms a conjecture of Chatterjee, Diaconis and Sly.
متن کاملDouble-null operators and the investigation of Birkhoff's theorem on discrete lp spaces
Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Random Struct. Algorithms
دوره 42 شماره
صفحات -
تاریخ انتشار 2013